According to the Agency for Toxic Substances and Disease Registry (ATSDR), from their Toxicological Profile of Aluminum (2008), aluminum has subtle neurological effects detected with neurobehavioural performance tests…
Neurodegenerative changes in the brain, manifested as intraneuronal hyperphosphorylated neurofilamentous aggregates, is a characteristic response to aluminum in certain species and nonnatural exposure situations generally involving direct application to brain tissue, particularly intracerebral and intracisternal administration and in vitro incubation in rabbits, cats, ferrets, and nonhuman primates.
Oral studies in rats and mice have not found significant histopathological changes in the brain under typical exposure conditions; however, altered myelination was found in the spinal cord of mouse pups exposed to 330 mg Al/kg/day on gestation day 1 through postnatal day 35.
Overt signs of neurotoxicity are rarely reported at the doses tested in the available animal studies ( ≤330mg Al/kg/day for bioavailable aluminum compounds); rather, exposure to these doses is associated with subtle neurological effects detected with neurobehavioral performance tests.
Significant alterations in motor function, sensory function, and cognitive function have been detected following exposure to adult or weanling rats and mice or following gestation and/or lactation exposure of rats and mice to aluminum lactate, aluminum nitrate, and aluminum chloride. The most consistently affected performance tests were forelimb and/or hindlimb grip strength, spontaneous motor activity, thermal sensitivity, and startle responsiveness.
Significant impairments in cognitive function have been observed in some studies, although this has not been found in other studies even at higher doses. Adverse neurological effects have been observed in rats and mice at doses of 100–200 mg Al/kg/day and neurodevelopmental effects have been observed in rats and mice at doses of 103–330 mg Al/kg/day.
ATSDR 2008